skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Schlegel, H. Bernhard"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Quantum mechanics is central to our understanding of chemistry both qualitatively and quantitatively. Modern electronic structure calculations can yield energies and structures of small to medium size molecules to chemical accuracy, thereby providing a computational model for chemistry. A potential energy surface describes the energy of a molecule as a function of its geometric parameters. The features of potential energy surfaces provide the connections between quantum mechanics and the traditional chemical concepts such as structure, bonding and reactivity. This brief perspective presents an overview of tools for exploring potential energy surfaces such as optimizing equilibrium geometries, finding transition states, following reaction paths and simulating molecular dynamics. 
    more » « less
    Free, publicly-accessible full text available June 3, 2026
  2. We report on a new water-soluble cobalt(II) complex capable of water splitting bifunctionality, i.e., water reduction and water oxidation. The species [CoII(LQpy)H2O]ClO4 (1), where LQpy is the deprotonated form of the new tripodal ligand N1,N1-bis(pyridin-2-ylmethyl)-N2-(quinolin-8-yl)benzene-1,2-diamine, HLQpy, was developed aiming to replace an oxidation prone methylene group by a sturdy and redox stable quinoline. The molecular and electronic structures of 1 were evaluated by multiple spectroscopic, spectrometric, electrochemical and computational methods, and detailed pre- and post-catalytic studies were conducted to ascertain the molecular nature of the conversions. Complex 1 performs water reduction at a low onset overpotential (eta) of 0.65 V at pH 7, reaching TON3h 2900 (TOF 970 h-1) and TON18h 12 100 (TOF 672 h-1) with up to 98% faradaic efficiency (FE). Species 1 also promotes water oxidation at eta = 0.34 V under pH 8, achieving TON3h 193 (TOF 64 h-1) at 84% FE. Experimental and DFT results enabled us to propose reaction intermediates and mechanisms. 
    more » « less
    Free, publicly-accessible full text available July 23, 2026
  3. For simulations of strong field ionization using time-dependent configuration with a complex absorbing potential (TDCI-CAP), standard molecular basis set must be augmented by several sets of diffuse functions to support the wavefunction as it is distorted by the strong field and interacts with the absorbing potential. Various sets of diffuse functions used in previous studies have been extended and evaluated for their ability to model the angular dependence of strong field ionization. These sets include diffuse s, p, d and f gaussian functions with selected even-tempered exponents of the form 0.0001×2n placed on each atom. For single-centered test cases, the largest contribution to the ionization rate is from functions with a maximum in the radial distribution close to the onset of the complex absorbing potential, while functions with smaller exponents also contributed to the rate. For molecules, diffuse functions on adjacent centers overlap strongly, leading to linear dependencies. The transformation to remove these linear dependencies mixes functions of different angular momenta making it difficult to assess the importance of individual s, p, d and f functions in simulating the rate for molecules. As an alternative, a hierarchy of diffuse basis sets was constructed starting with a small set and adding one or two functions at a time. These basis sets were evaluated for their ability to reproduce the rate and the shape of the angular dependence of strong field ionization. When combined with the aug-cc-pVTZ molecular basis set and an absorbing potential starting at 3.5 times the van der Waals radius for each atom, the most diffuse s, p, d and f functions need to have exponents of 0.0032, 0.0032, 0.0064 and 0.0064, respectively, or smaller. Strong field ionization from electronegative atoms such as oxygen required additional f functions with tight exponents of 0.0512 and 0.1024. Diffuse basis sets that perform well for the angular dependence of the ionization rate with a static field are equally effective for strong field ionization with a linearly polarized 7 cycle 800 nm pulse. 
    more » « less
    Free, publicly-accessible full text available April 10, 2026
  4. Modeling charge migration resulting from the coherent superposition of cation ground and excited states requires information about the potential energy surfaces of the relevant cation states. Since these states are often of the same electronic symmetry as the ground state of the cation, conventional single reference methods such as coupled cluster cannot be used for the excited states. The EOMCCSD-IP (equation of motion coupled cluster with single and double excitations and ionization) is a convenient and reliable “black-box” method that can be used for the ground and excited states of cations, yielding results of CCSD (coupled cluster with singles and double excitation) quality. Charge migration in haloacetylene cations arises from the superposition of the X and A states of HCCX+ (X = F, Cl, Br and I). The geometries, ionization potentials and vibrational frequencies have been calculated by CCSD/cc-pVTZ for neutral HCCX and the X state of HCCX+ and by EOM CCSD-IP/cc-pVTZ for the X and A states of HCCX+. The results agree very well with each other and with experiment. The very good agreement between CCSD and EOMCCSD-IP for the X states demonstrates that EOMCCSD-IP is a suitable method for calculating the structure and properties of ground and excited states for the HCCX cations. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  5. The lack of catalytic stereoselective approaches for producing 1,2-cis S-furanosides emphasizes the critical need for further research in this area. Herein, we present a stereoselective S-furanosylation method, utilizing a 4,7-dipiperidine-substituted phenanthroline catalyst. This developed protocol fills a gap in the field, enabling the coupling of cysteine residues and thiols with furanosyl bromide electrophiles. The process allows for stereoselective access to 1,2-cis S-furanosides. Through computational and experimental investigations, thiol is found to be less reactive than alcohol but exhibits greater stereoselectivity. The 1,2-cis stereoselectivity of O-products depends on the nature of the electrophile, while S-products are obtained with excellent 1,2-cis stereoselectivity, irrespective of the furanose structure. The displaced bromide ion from the glycosyl electrophile influences the reaction’s reactivity and stereoselectivity. Alcohol-OH forms a stronger hydrogen bond with bromide ion than thiol-SH, contributing to the difference in their reactivity. The energy difference between forming S-furanoside and O-furanoside transition states is 3.7 kcal/mol, supporting the increased reactivity of alcohol over thiol. The difference in transition state energies between the major and minor S-product is greater than that for the major and minor O-product. This is consistent with experimental data showing how thiol is more stereoselective than alcohol. The catalyst and reaction conditions utilized for the generation of 1,2-cis O-furanosides in our prior studies are found to be unsuitable for the synthesis of 1,2-cis S-furanosides. In the present study, a highly reactive phenanthroline catalyst and specific reaction conditions have been developed to achieve stereoselective S-linked product formation. 
    more » « less
    Free, publicly-accessible full text available January 2, 2026
  6. Strong field ionization of molecules by intense laser pulses can be simulated by time-dependent configuration interaction (TD-CI) with a complex absorbing potential (CAP). Standard molecular basis sets need to be augmented with several sets of diffuse functions for effective interaction with the CAP. This dramatically increases the number of configurations and the cost of the TD-CI simulations as the size of the molecules increases. The cost can be reduced by making use of spin symmetry and by employing an orbital energy cut-off to limit the number of virtual orbitals used to construct the excited configurations. Greater reductions in the number of virtual orbitals can be obtained by examining their interaction with the absorbing potential during simulations and their contributions to the strong field ionization rate. This can be determined from the matrix elements of the absorbing potential and the TD-CI coefficients from test simulations. Compared to a simple 3 hartree cut-off in the orbital energies, these approaches reduce the number of virtual orbitals by 20% - 35% for neutral molecules and 5%-10% for cations. As a result, the cost of simulations is reduced by 35% - 60% for neutral molecules and 5% - 10% for cations. The number of virtual orbitals needed can also be estimated by second-order perturbation theory without the need for test simulations. The number of virtual orbitals can be reduced further by adapting orbitals to the laser field using natural orbitals derived from test simulations. This is particularly effective for cations, yielding reductions of more than 20%. 
    more » « less
  7. Carbohydrate molecules with an alpha-glycosylated carboxylic acid motif provide access to biologically relevant chemical space but are difficult to synthesize with high selectivity. To address this challenge, we report a mild and operationally simple protocol to synthesize a wide range of functionally and structurally diverse alpha-glycosylated carboxylic acids in good yields with high diastereoselectivity. While there is no apparent correlation between reaction conversion and the pKa of carboxylic acids, there is a notable trend in selectivity. Carboxylic acids with a pKa ranging from 4 to 5 exhibit high selectivity, whereas those with a pKa of 2.5 or lower do not display the same level of selectivity. Our strategy utilizes readily available 2,9-dibutyl-1,10-phenanthroline as an effective nucleophilic catalyst to displace a bromide leaving group from an activated sugar electrophile in a nucleophilic substitution reaction, forming phenanthrolinium intermediates. The attack of the carboxylic acid takes place from the alpha-face of the more reactive intermediate, resulting in the formation of alpha-glycosylated carboxylic acid. Previous calculations suggested that the hydroxyl group participates in the hydrogen bond interaction with the basic C2-oxygen of a sugar moiety and serves as a nucleophile to attack the C1-anomeric center. In contrast, our computational studies reveal that the carbonyl oxygen of the carboxylic acid serves as a nucleophile, with the carboxylic acid-OH forming a hydrogen bond with the basic C2-oxygen of the sugar moiety. This strong hydrogen bond (1.65 Å) interaction increases the nucleophilicity of the carbonyl oxygen of carboxylic acid and plays a critical role in the selectivity-determining step. In contrast, when alcohol acts as a nucleophile, this scenario is not possible since the -OH group of the alcohol interacts with the C2-oxygen and attacks the C1-anomeric carbon of the sugar moiety. This is also reflected in alcohol-OH's weak hydrogen bond (1.95 Å) interaction with the C2-oxygen. The O(C2)-HO (carboxylic acid) angle was measured to be 171° while the O(C2)-HO (alcohol) angle at 122° deviates from linearity, resulting in weak hydrogen bonding. 
    more » « less
  8. We provide an approach to sample rare events during classical ab initio molecular dynamics and quantum wavepacket dynamics. For classical AIMD, a set of fictitious degrees of freedom are introduced that may harmonically interact with the electronic and nuclear degrees of freedom to steer the dynamics in a conservative fashion toward energetically forbidden regions. A similar approach when introduced for quantum wavepacket dynamics has the effect of biasing the trajectory of the wavepacket centroid toward the regions of the potential surface that are difficult to sample. The approach is demonstrated for a phenol-amine system, which is a prototypical problem for condensed phase-proton transfer, and for model potentials undergoing wavepacket dynamics. In all cases, the approach yields trajectories that conserve energy while sampling rare events. 
    more » « less
  9. The Sharpless reaction is an enantioselective epoxidation of prochiral allylic alcohols that employs a Ti(IV) catalyst formed from titanium tetra(isopropoxide), Ti(O-i-Pr)4, diethyl tartrate (DET) and the oxidizing agent tert-butyl hydroperoxide. The M06-2X DFT functional with the 6-311+G(d,p) basis set has been employed to model the structures and energetics of the Sharpless epoxidation reaction. The monomeric tetracoordinate titanium(IV) diethyltartrate is thermodynamically strongly favored to dimerize, producing pentacoordinate catalyst, [Ti(DET)(O-i-Pr)2]2, that is a more reactive chiral epoxidation catalyst. The rapid ligand exchange reactions needed to generate the “loaded” catalyst and to repeat the overall catalytic cycle have been examined and are found to have activation energies that are much lower than the epoxidation barriers. The transition structures and activation energies for the enantioselective epoxidation of allyl alcohol, trans-methyl-allyl alcohol and trans-tert-butyl-allyl alcohol with the “loaded” Sharpless catalyst, [Ti2(DET)2 (O-i-Pr)2-(OAllyl)-(OOt-Bu)], are presented. The effect of the C=O•••Ti interactions on the activation energies and the significance of the O-C-C=C dihedral angle on the enantioselectivity of the epoxidation reaction are discussed. 
    more » « less
  10. Strong field ionization of neutral iodoacetylene (HCCI) can produce a coherent superposition of the X and A cations and results in charge migration between the CC  orbital and the iodine -type lone pair. This charge migration causes oscillations in the rate of strong field ionization of the cation to the dication that can be monitored using intense, few cycle probe pulses. The dynamics and strong field ionization of the coherent superposition the X and A states of HCCI+ have been modelled by time dependent configuration interaction simulations. When the nuclei are allowed to move, the electronic wavefunctions need to be multiplied by vibrational wavefunctions. Nuclear motion has been modelled by vibrational packets moving on quadratic approximations to the potential energy surfaces for the X and A states of the cation. The overlap of the vibrational wavepackets decays in about 10-15 fs. Consequently, the oscillations in the strong field ionization decay on the same time scale. A revival of the vibrational overlap and in the oscillations of the strong field ionization is seen at 60 – 110 fs. TDCI simulations show that the decay and revival of the charge migration can be monitored by strong field ionization with intense 2 and 4 cycle linearly polarized 800 nm pulses. The revival is also seen with 7 cycle pulses. 
    more » « less